Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae).
نویسندگان
چکیده
UNLABELLED PREMISE OF THE STUDY A mixture of outcrossing and selfing is often observed in plant populations. Although mixed mating is ubiquitous, it has several potential evolutionary explanations. Mixed mating may be actively maintained by selection, passively determined by the pollination environment, or a transitional stage during the evolution of self-fertilization. • METHODS We studied patterns of self-compatibility and selfing rates in a population of Leavenworthia alabamica that recently lost self-incompatibility. We also experimentally tested whether natural selection against selfing at the pre- or postzygotic stage is sufficient to explain mixed mating in this population. • KEY RESULTS Visualizing pollen tube growth following self-pollination, we found that nearly all plants were fully self-compatible. Progeny array analysis revealed that the average selfing rate of the population was s = 0.523. The inbreeding coefficient in the parents (F = 0.539) exceeded the amount expected if the selfing rate (s) were constant [F(eq) = s/(2 - s)], indicating either population subdivision or higher selfing rates in the past. Inference of family-level selfing rates revealed substantial variation. Experiments found that self and outcross pollen fertilized nearly equal numbers of ovules in competition. Comparison of seed production following self- or cross-pollination failed to implicate early acting inbreeding depression as a factor maintaining mixed mating. • CONCLUSIONS The results of our experiments suggest that mixed mating is not maintained by selection against self-pollen or zygotes in this population. Mixed mating is most likely a byproduct of the pollination process but may also be a transitional stage during the evolution of higher selfing rates.
منابع مشابه
The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae).
Self-compatibility and adaptations to self-fertilization are often found in plant populations at the periphery of species' ranges or on islands. Self-compatibility may predominate in these environments because it provides reproductive assurance when pollinators or availability of mates limits seed production. This possibility was studied in Leavenworthia alabamica, a flowering plant endemic to ...
متن کاملLeavenworthia (Brassicaceae) Revisited: Testing Classic Systematic and Mating System Hypotheses
The genus Leavenworthia (Brassicaceae) has long been a focus of research on mating system evolution, due to the presence of both self-incompatible and self-compatible species within the genus. A phylogenetic hypothesis invoking multiple transitions between mating systems has been proposed for Leavenworthia, but this hypothesis has not been subject to molecular phylogenetic analysis. DNA sequenc...
متن کاملGenetic factors associated with mating system cause a partial reproductive barrier between two parapatric species of leavenworthia (brassicaceae).
Reproductive barriers play a major role in the origin and maintenance of biodiversity by restricting gene flow between species. Although both pre- and postzygotic barriers often isolate species, prezygotic barriers are thought to contribute more to reproductive isolation. We investigated possible reproductive barriers between Leavenworthia alabamica and L. crassa, parapatric species with high m...
متن کاملMolecular characterization of Lal2, an SRK-like gene linked to the S-locus in the wild mustard Leavenworthia alabamica.
Single-locus sporophytic self-incompatibility inhibits inbreeding in many members of the mustard family (Brassicaceae). To investigate the genetics of self-incompatibility in the wild mustard Leavenworthia alabamica, diallel crosses were conducted between full siblings. Patterns of incompatibility were consistent with the action of single-locus sporophytic self-incompatibility. DNA sequences re...
متن کاملDemographic signatures accompanying the evolution of selfing in Leavenworthia alabamica.
The evolution of selfing from outcrossing is a common transition, yet little is known about the mutations and selective factors that promote this shift. In the mustard family, single-locus self-incompatibility (SI) enforces outcrossing. In this study, we test whether mutations causing self-compatibility (SC) are linked to the self-incompatibility locus (S-locus) in Leavenworthia alabamica, a sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2010